Combining Convolutional Neural Network and Markov Random Field for Semantic Image Retrieval
نویسندگان
چکیده
منابع مشابه
A Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملImage Crowd Counting Using Convolutional Neural Network and Markov Random Field
In this paper, we propose a method called Convolutional Neural Network-Markov Random Field (CNN-MRF) to estimate the crowd count in a still image. We first divide the dense crowd visible image into overlapping patches and then use a deep convolutional neural network to extract features from each patch image, followed by a fully connected neural network to regress the local patch crowd count. Si...
متن کاملCombining Fisher Vector and Convolutional Neural Networks for Image Retrieval
Fisher Vector (FV) and deep Convolutional Neural Network (CNN) are two popular approaches for extracting effective image representations. FV aggregates local information (e.g., SIFT) and have been state-of-the-art before the recent success of deep learning approaches. Recently, combination of FV and CNN has been investigated. However, only the aggregation of SIFT has been tested. In this work, ...
متن کاملComparison of Neural Network and Markov Random Field Image Segmenta
The interpretation of da ta from nondestructive evaluation (NDE) techniques is a tedious and time-consuming manual process that is subject to such random variables as sc an quality, and inspector expertise and fatigue. The authors are researching methods to automatically recognize defects in ultrasonic images of aircraft structures. A typical wing skin image with an annotated defect is shown in...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Multimedia
سال: 2018
ISSN: 1687-5680,1687-5699
DOI: 10.1155/2018/6153607