Combinatorial identities for binary necklaces from exact ray-splitting trace formulas

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial identities for binary necklaces from exact ray-splitting trace formulae

Based on an exact trace formula for a one-dimensional ray-splitting system, we derive novel combinatorial identities for cyclic binary sequences (Pólya necklaces). 02.10.Eb, 02.30.Lt, 05.45.+b Typeset using REVTEX 1

متن کامل

0 10 70 26 v 1 2 6 Ju l 2 00 1 Combinatorial identities for binary necklaces from exact ray - splitting trace formulae

Based on an exact trace formula for a one-dimensional ray-splitting system, we derive novel combinatorial identities for cyclic binary sequences (Pólya necklaces).

متن کامل

Explicit Formulas and Combinatorial Identities for Generalized Stirling Numbers

In this paper, a modified approach to the multiparameter non-central Stirling numbers via differential operators, introduced by El-Desouky, and new explicit formulae of both kinds of these numbers are given. Also, some relations between these numbers and the generalized Hermite and Truesdel polynomials are obtained. Moreover, we investigate some new results for the generalized Stirling-type pai...

متن کامل

Splitting Multidimensional Necklaces

The well-known “splitting necklace theorem” of Alon [1] says that each necklace with k · ai beads of color i = 1, . . . , n can be fairly divided between k “thieves” by at most n(k − 1) cuts. Alon deduced this result from the fact that such a division is possible also in the case of a continuous necklace [0, 1] where beads of given color are interpreted as measurable sets Ai ⊂ [0, 1] (or more g...

متن کامل

Exact trace formulae for a class of one-dimensional ray-splitting systems

Based on quantum graph theory we establish that the ray-splitting trace formula proposed by Couchman et al. (Phys. Rev. A 46, 6193 (1992)) is exact for a class of one-dimensional ray-splitting systems. Important applications in combinatorics are suggested. PACS: 05.45.+b,03.65.Sq,72.15.Rn

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2001

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.1413226