Collocation methods for nonlinear Volterra integro-differential equations with infinite delay
نویسندگان
چکیده
منابع مشابه
Collocation Methods for Nonlinear Volterra Integro-Differential Equations with Infinite Delay*
In this paper we study the numerical solution of nonlinear Volterra integrodifferential equations with infinite delay by spline collocation and related Runge-Kutta type methods. The kernel function in these equations is of the form k(t,s,y(t),y(s)), with a representative example given by Volterra's population equation, where we have k(t, s, y(t),y(s)) = a(t s) ■ G(y(t), y(s)). '
متن کاملMultistep collocation methods for Volterra integro-differential equations
Keywords: Volterra integro-differential equations Multistep collocation Superconvergence Stability a b s t r a c t Multistep collocation methods for Volterra integro-differential equations are derived and analyzed. They increase the order of convergence of classical one-step collocation methods, at the same computational cost. The numerical stability analysis is carried out and classes of A 0-s...
متن کاملSPLINE COLLOCATION FOR FREDHOLM AND VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
A collocation procedure is developed for the linear and nonlinear Fredholm and Volterraintegro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solutionis collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula.The error analysis of proposed numerical method is studied theoretically. Numerical results are given toil...
متن کاملSuperconvergent interpolants for collocation methods applied to Volterra integro-differential equations with delay
Standard software based on the collocation method for differential equations, delivers a continuous approximation (called the collocation solution) which augments the high order discrete approximate solution that is provided at mesh points. This continuous approximation is less accurate than the discrete approximation. For ’non-standard’ Volterra integro-differential equations with constant del...
متن کاملFuzzy collocation methods for second- order fuzzy Abel-Volterra integro-differential equations
In this paper we intend to offer new numerical methods to solve the second-order fuzzy Abel-Volterraintegro-differential equations under the generalized $H$-differentiability. The existence and uniqueness of thesolution and convergence of the proposed methods are proved in details and the efficiency of the methods is illustrated through a numerical example.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1989
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1989-0979936-2