Collinearity in generalized linear models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collinearity in Linear Structural Models of Market Power

The well-known structural model used to estimate market structure suffers from a severe collinearity problem if the marginal cost and demand equations are linear.

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Generalized Linear Mixed Models

Generalized linear models (GLMs) represent a class of fixed effects regression models for several types of dependent variables (i.e., continuous, dichotomous, counts). McCullagh and Nelder [32] describe these in great detail and indicate that the term ‘generalized linear model’ is due to Nelder and Wedderburn [35] who described how a collection of seemingly disparate statistical techniques coul...

متن کامل

Generalized Linear Models

Binary Logistic Regressions The classic example of a generalized linear model is when our response data y is binary, so that we can code it as zero/one. For example, one has the disease/does not have the disease, lives/dies, the device fails/device does not fail. To model binary data, a quite reasonable and very general approach is to use the predictor variables (the x’s) to estimate the probab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Statistics - Theory and Methods

سال: 1989

ISSN: 0361-0926,1532-415X

DOI: 10.1080/03610928908830102