Collaboration of multiple SCARA robots with guaranteed safety using recurrent neural networks
نویسندگان
چکیده
SCARA robot is one of the most popularly used robots in industry. The obstacle avoidance feature multiple collaboration essential and prominent, which can be to support accomplish not only more sophisticated tasks but also efficient than individual robot. This paper mainly focuses on studying problem simultaneous multi-robot coordination avoidance. A cooperative kinematic control manipulators, collision taken into account primary task as an inequality constraint trajectory planning considered secondary objective ensure priority safety, described a quadratic programming (QP) problem. Then, recurrent neural network (RNN) based dynamic controller designed solve formulated QP recursively. convergence proved through Lyapunov analysis. With three planar robots, effectiveness proposed validated numerical simulations. As observed results, when minimal distance between less setting safety distance, strategy reacts impel avoid collision, achieves for avoidance; otherwise, performs desired tracking task.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Communication with Robots using Multilayer Recurrent Networks
In this paper, we describe an improvement on the task of giving instructions to robots in a simulated block world using unrestricted natural language commands.
متن کاملTrajectory Generation for Bipedal Robots Using Recurrent Neural Networks
Motivation: The idea of learning a feedback control function in a neural network has exciting implications. If we could train a neural network to output the optimal control variables for any position in state space, then the walking problem would be completely solved. Unfortunately, our own recent experiments with using neural networks to directly learn the control variables (torques) worked we...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2021
ISSN: ['0925-2312', '1872-8286']
DOI: https://doi.org/10.1016/j.neucom.2021.05.049