Coindex and Rigidity of Einstein Metrics on Homogeneous Gray Manifolds
نویسندگان
چکیده
Abstract Any 6-dimensional strict nearly Kähler manifold is Einstein with positive scalar curvature. We compute the coindex of metric respect to Einstein–Hilbert functional on each compact homogeneous examples. Moreover, we show that infinitesimal deformations $$F_{1,2}={\text {SU}}(3)/T^2$$ F 1 , 2 = SU ( 3 ) / T are not integrable into a curve metrics.
منابع مشابه
Homogeneous Einstein metrics on Stiefel manifolds
A Stiefel manifold VkR n is the set of orthonormal k-frames inR, and it is diffeomorphic to the homogeneous space SO(n)/SO(n−k). We study SO(n)-invariant Einstein metrics on this space. We determine when the standard metric on SO(n)/SO(n−k) is Einstein, and we give an explicit solution to the Einstein equation for the space V2R.
متن کاملEinstein Metrics and Mostow Rigidity
Using the new diffeomorphism invariants of Seiberg and Witten, a uniqueness theorem is proved for Einstein metrics on compact quotients of irreducible 4-dimensional symmetric spaces of non-compact type. The proof also yields a Riemannian version of the Miyaoka-Yau inequality. A smooth Riemannian manifold (M, g) is said [1] to be Einstein if its Ricci curvature is a constant multiple of g. Any i...
متن کاملExistence of Einstein metrics on Fano manifolds
This is largely an expository paper and dedicated to my friend J. Cheeger for his 65th birthday. The purpose of this paper is to discuss some of my works on the existence of Kähler-Einstein metrics on Fano manifolds and some related topics. I will describe a program I have been following for the last twenty years. It includes some of my results and speculations which were scattered in my previo...
متن کاملLow-dimensional Homogeneous Einstein Manifolds
A closed Riemannian manifold (Mn, g) is called Einstein if the Ricci tensor of g is a multiple of itself; that is, ric(g) = λ · g. This equation, called the Einstein equation, is a complicated system of second order partial differential equations, and at the present time no general existence results for Einstein metrics are known. However, there are results for many interesting classes of Einst...
متن کامل4-Manifolds without Einstein Metrics
It is shown that there are infinitely many compact orientable smooth 4-manifolds which do not admit Einstein metrics, but nevertheless satisfy the strict Hitchin-Thorpe inequality 2χ > 3|τ |. The examples in question arise as non-minimal complex algebraic surfaces of general type, and the method of proof stems from Seiberg-Witten theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometric Analysis
سال: 2022
ISSN: ['1559-002X', '1050-6926']
DOI: https://doi.org/10.1007/s12220-022-01061-4