Coefficients for alpha-convex univalent functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coefficients of Univalent Functions

The interplay of geometry and analysis is perhaps the most fascinating aspect of complex function theory. The theory of univalent functions is concerned primarily with such relations between analytic structure and geometric behavior. A function is said to be univalent (or schlichi) if it never takes the same value twice: f(z{) # f(z2) if zx #= z2. The present survey will focus upon the class S ...

متن کامل

Bounds for the Coefficients of Univalent Functions

assumed regular and Univalent in \z\ <1, in terms of the domain onto which \z\ <1 is mapped through (1). A typical result, cf. (27), is that if this domain does not cover arbitrarily large circles, then1 a„ = 0(log n). Let W be the domain in the w-plane onto which \z\ <1 is mapped through (1) and denote by .4(72) the radius of the largest circle with center on |w| = 72 the whole interior of whi...

متن کامل

Sufficient Inequalities for Univalent Functions

In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.

متن کامل

On Nonvanishing Univalent Functions with Real Coefficients*

S O u {1} is a compact subset of A. Duren and Schober had been interested in extreme points and support points of S o. Recall that a support point of a family F is a function which maximizes the real part of some continuous linear functional, that is not constant over F. We shall give a characterization of the extreme points and support points of the subfamily So(R ) of nonvanishing univalent f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1974

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1974-13494-4