Coarse Lipschitz embeddings of James spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coarse and Uniform Embeddings into Reflexive Spaces

Answering an old problem in nonlinear theory, we show that c0 cannot be coarsely or uniformly embedded into a reflexive Banach space, but that any stable metric space can be coarsely and uniformly embedded into a reflexive space. We also show that certain quasi-reflexive spaces (such as the James space) also cannot be coarsely embedded into a reflexive space and that the unit ball of these spac...

متن کامل

Coarse Embeddings of Metric Spaces into Banach Spaces

There are several characterizations of coarse embeddability of a discrete metric space into a Hilbert space. In this note we give such characterizations for general metric spaces. By applying these results to the spaces Lp(μ), we get their coarse embeddability into a Hilbert space for 0 < p < 2. This together with a theorem by Banach and Mazur yields that coarse embeddability into l2 and into L...

متن کامل

Best constants for Lipschitz embeddings of metric spaces into c

We answer a question of Aharoni by showing that every separable metric space can be Lipschitz 2-embedded into c0 and this result is sharp; this improves earlier estimates of Aharoni, Assouad and Pelant. We use our methods to examine the best constant for Lipschitz embeddings of the classical `p-spaces into c0 and give other applications. We prove that if a Banach space embeds almost isometrical...

متن کامل

Lipschitz and Path Isometric Embeddings of Metric Spaces

We prove that each sub-Riemannian manifold can be embedded in some Euclidean space preserving the length of all the curves in the manifold. The result is an extension of Nash C Embedding Theorem. For more general metric spaces the same result is false, e.g., for Finsler non-Riemannian manifolds. However, we also show that any metric space of finite Hausdorff dimension can be embedded in some Eu...

متن کامل

Amenability, Locally Finite Spaces, and Bi-lipschitz Embeddings

We define the isoperimetric constant for any locally finite metric space and we study the property of having isoperimetric constant equal to zero. This property, called Small Neighborhood property, clearly extends amenability to any locally finite space. Therefore, we start making a comparison between this property and other notions of amenability for locally finite metric spaces that have been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin

سال: 2018

ISSN: 1370-1444

DOI: 10.36045/bbms/1523412054