Coadjoint representation of the BMS group on celestial Riemann surfaces

نویسندگان

چکیده

The coadjoint representation of the BMS group in four dimensions is constructed a formulation that covers both sphere and punctured plane. structure constants are worked out for different choices bases. conserved current algebra non-radiative asymptotically flat spacetimes explicitly interpreted these terms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coulomb gas representation of qunatum Hall effect on Riemann surfaces

Using the correlation function of chiral vertex operators of the Coulomb gas model, we find the Laughlin wavefunctions of quantum Hall effect, with filling factor ν = 1/m, on Riemann sufaces with Poincare metric. The same is done for quasihole wavefunctions. We also discuss their plasma analogy. e-mail:[email protected] e-mail:[email protected]

متن کامل

Coulomb gas representation of quantum Hall effect on Riemann surfaces

Using the correlation function of chiral vertex operators of the Coulomb gas model, we find the Laughlin wavefunctions of quantum Hall effect, with filling factor ν = 1/m, on Riemann sufaces with Poincare metric. The same is done for quasihole wavefunctions. We also discuss their plasma analogy. e-mail:[email protected] e-mail:[email protected]

متن کامل

Computing on Riemann Surfaces

These notes are a review on computational methods that allow us to use computers as a tool in the research of Riemann surfaces, algebraic curves and Jacobian varieties. It is well known that compact Riemann surfaces, projective algebraiccurves and Jacobian varieties are only diierent views to the same object, i.e., these categories are equivalent. We want to be able to put our hands on this equ...

متن کامل

Poincaré’s theorem for the modular group of real Riemann surfaces

Let Modg be the modular group of surfaces of genus g. Each element [h] ∈ Modg induces in the integer homology of a surface of genus g a symplectic automorphism H([h]) and Poincaré shown that H : Modg → Sp(2g,Z) is an epimorphism. The theory of real algebraic curves justify the definition of real Riemann surface as a Riemann surface S with an anticonformal involution σ. Let (S, σ) be a real Riem...

متن کامل

Coalescence on Riemann Surfaces

We consider coalescing fermions on a Riemann Surface and derive generalized determinant formulas, complementing some results of 3].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2021

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep06(2021)079