Coadjoint Poisson Actions of Poisson-Lie Groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie-poisson Structure on Some Poisson Lie Groups

Poisson Lie groups appeared in the work of Drinfel'd (see, e.g., [Drl, Dr2]) as classical objects corresponding to quantum groups. Going in the other direction, we may say that a Poisson Lie group is a group of symmetries of a phase space that are allowed to "twist," in a certain sense, the symplectic or Poisson structure. The Poisson structure on the group controls this twisting in a precise w...

متن کامل

Lie algebroids associated to Poisson actions

Let P be a Poisson homogeneous G-space. In [Dr2], Drinfeld shows that corresponding to each p ∈ P , there is a maximal isotropic Lie subalgebra lp of the Lie algebra d, the double Lie algebra of the tangent Lie bialgebra (g, g∗) of G. Moreover, for g ∈ G, the two Lie algebras lp and lgp are related by lgp = Adg lp via the Adjoint action of G on d. In particular, they are isomorphic as Lie algeb...

متن کامل

Homogeneous symplectic manifolds of Poisson-Lie groups

Symplectic manifolds which are homogeneous spaces of Poisson-Lie groups are studied in this paper. We show that these spaces are, under certain assumptions, covering spaces of dressing orbits of the Poisson-Lie groups which act on them. The effect of the Poisson induction procedure on such spaces is also examined, thus leading to an interesting generalization of the notion of homogeneous space....

متن کامل

Symplectic Structures Associated to Lie-poisson Groups

The Lie-Poisson analogues of the cotangent bundle and coadjoint orbits of a Lie group are considered. For the natural Poisson brackets the symplectic leaves in these manifolds are classified and the corresponding symplectic forms are described. Thus the construction of the Kirillov symplectic form is generalized for Lie-Poisson groups. On leave of absence from LOMI, Fontanka 27, St.Petersburg, ...

متن کامل

Lie Bialgebras of Complex Type and Associated Poisson Lie Groups

In this work we study a particular class of Lie bialgebras arising from Hermitian structures on Lie algebras such that the metric is ad-invariant. We will refer to them as Lie bialgebras of complex type. These give rise to Poisson Lie groups G whose corresponding duals G∗ are complex Lie groups. We also prove that a Hermitian structure on g with ad-invariant metric induces a structure of the sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Mathematical Physics

سال: 1999

ISSN: 1776-0852

DOI: 10.2991/jnmp.1999.6.3.9