Clustering of ant communities and indicator species analysis using self-organizing maps
نویسندگان
چکیده
منابع مشابه
using game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
improving seismic facies analysis using wtmmla attributes, self-organizing maps and k-mean clustering
reservoir models are initially generated from estimates of specific rock properties and maps of reservoir heterogeneity. many types of information are used in reservoir model construction. one of the most important sources of information comes from wells, including well logs and core samples. unfortunately well log and core data are local measurements that may not reflect the reservoir behavior...
متن کاملInfer Species Phylogenies Using Self-Organizing Maps
With rapid advances in genomics, phylogenetics has turned to phylogenomics due to the availability of large amounts of sequence and genome data. However, incongruence between species trees and gene trees remains a challenge in molecular phylogenetics for its biological and algorithmic complexities. A state-of-the-art gene concatenation approach was proposed to resolve this problem by inferring ...
متن کاملGene Clustering Using Self-Organizing Maps and Particle Swarm Optimization
Gene clustering, the process of grouping related genes in the same cluster, is at the foundation of different genomic studies that aim at analyzing the function of genes. Microarray technologies have made it possible to measure gene expression levels for thousand of genes simultaneously. For knowledge to be extracted from the datasets generated by these technologies, the datasets have to be pre...
متن کاملClustering Using Adaptive Self-organizing Maps (ASOM) and Applications
This paper presents an innovative, adaptive variant of Kohonen’s selforganizing maps called ASOM, which is an unsupervised clustering method that adaptively decides on the best architecture for the self-organizing map. Like the traditional SOMs, this clustering technique also provides useful information about the relationship between the resulting clusters. Applications of the resulting softwar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus Biologies
سال: 2014
ISSN: 1631-0691
DOI: 10.1016/j.crvi.2014.07.003