ClusterGAN: Latent Space Clustering in Generative Adversarial Networks
نویسندگان
چکیده
منابع مشابه
Automatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملPrecise Recovery of Latent Vectors from Generative Adversarial Networks
Generative adversarial networks (GANs) transform latent vectors into visually plausible images. It is generally thought that the original GAN formulation gives no out-of-the-box method to reverse the mapping, projecting images back into latent space. We introduce a simple, gradient-based technique called stochastic clipping. In experiments, for images generated by the GAN, we precisely recover ...
متن کاملSemantically Decomposing the Latent Spaces of Generative Adversarial Networks
We propose a new algorithm for training generative adversarial networks that jointly learns latent codes for both identities (e.g. individual humans) and observations (e.g. specific photographs). By fixing the identity portion of the latent codes, we can generate diverse images of the same subject, and by fixing the observation portion, we can traverse the manifold of subjects while maintaining...
متن کاملOptimizing the Latent Space of Generative Networks
Generative Adversarial Networks (GANs) have been shown to be able to sample impressively realistic images. GAN training consists of a saddle point optimization problem that can be thought of as an adversarial game between a generator which produces the images, and a discriminator, which judges if the images are real. Both the generator and the discriminator are commonly parametrized as deep con...
متن کاملSyncGAN: Synchronize the Latent Space of Cross-modal Generative Adversarial Networks
Generative adversarial network (GAN) has achieved impressive success on cross-domain generation, but it faces difficulty in cross-modal generation due to the lack of a common distribution between heterogeneous data. Most existing methods of conditional based cross-modal GANs adopt the strategy of one-directional transfer and have achieved preliminary success on text-to-image transfer. Instead o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33014610