Closedness of ranges of unbounded upper triangular operator matrices
نویسندگان
چکیده
منابع مشابه
Non-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کاملcocharacters of upper triangular matrices
we survey some recent results on cocharacters of upper triangular matrices. in particular, we deal both with ordinary and graded cocharacter sequence; we list the principal combinatorial results; we show di erent tech-niques in order to solve similar problems.
متن کاملUpper Triangular Operator Matrices , SVEP and Browder , Weyl Theorems
A Banach space operator T ∈ B(X ) is polaroid if points λ ∈ isoσσ(T ) are poles of the resolvent of T . Let σa(T ), σw(T ), σaw(T ), σSF+(T ) and σSF−(T ) denote, respectively, the approximate point, the Weyl, the Weyl essential approximate, the upper semi–Fredholm and lower semi–Fredholm spectrum of T . For A, B and C ∈ B(X ), let MC denote the operator matrix (
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملUpper triangular matrices and Billiard Arrays
Article history: Received 12 September 2015 Accepted 21 December 2015 Available online xxxx Submitted by R. Brualdi MSC: primary 05E15 secondary 15A21
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2021
ISSN: 1846-3886
DOI: 10.7153/oam-2021-15-28