Closed Weingarten hypersurfaces in Riemannian manifolds
نویسندگان
چکیده
منابع مشابه
Closed Weingarten Hypersurfaces in Semi-riemannian Manifolds
The existence of closed hypersurfaces of prescribed curvature in semi-riemannian manifolds is proved provided there are barriers.
متن کاملClosed Weingarten Hypersurfaces in Warped Product Manifolds
Given a compact Riemannian manifold M , we consider a warped product M̄ = I ×h M where I is an open interval in R. We suppose that the mean curvature of the fibers do not change sign. Given a positive differentiable function ψ in M̄ , we find a closed hypersurface Σ which is solution of an equation of the form F (B) = ψ, where B is the second fundamental form of Σ and F is a function satisfying c...
متن کاملCurvature Estimates for Weingarten Hypersurfaces in Riemannian Manifolds
We prove curvature estimates for general curvature functions. As an application we show the existence of closed, strictly convex hypersurfaces with prescribed curvature F , where the defining cone of F is Γ+. F is only assumed to be monotone, symmetric, homogeneous of degree 1, concave and of class C, m ≥ 4.
متن کاملBiharmonic Hypersurfaces in Riemannian Manifolds
We study biharmonic hypersurfaces in a generic Riemannian manifold. We first derive an invariant equation for such hypersurfaces generalizing the biharmonic hypersurface equation in space forms studied in [16], [8], [6], [7]. We then apply the equation to show that the generalized Chen’s conjecture is true for totally umbilical biharmonic hypersurfaces in an Einstein space, and construct a (2-p...
متن کاملConstant k-curvature hypersurfaces in Riemannian manifolds
In [8], Rugang Ye proved the existence of a family of constant mean curvature hypersurfaces in an m+ 1-dimensional Riemannian manifold (M, g), which concentrate at a point p0 (which is required to be a nondegenerate critical point of the scalar curvature), moreover he proved that this family constitute a foliation of a neighborhood of p0. In this paper we extend this result to the other curvatu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1996
ISSN: 0022-040X
DOI: 10.4310/jdg/1214458325