CLC Anion Channel Regulatory Phosphorylation and Conserved Signal Transduction Domains
نویسندگان
چکیده
منابع مشابه
Identification of Regulatory Phosphorylation Sites in a Cell Volume– and Ste20 Kinase–dependent ClC Anion Channel
Changes in phosphorylation regulate the activity of various ClC anion transport proteins. However, the physiological context under which such regulation occurs and the signaling cascades that mediate phosphorylation are poorly understood. We have exploited the genetic model organism Caenorhabditis elegans to characterize ClC regulatory mechanisms and signaling networks. CLH-3b is a ClC anion ch...
متن کاملInitiation of TCR Phosphorylation and Signal Transduction
Recent data with CD8+ T cells show that the initial phase of T cell receptor (TCR) binding to MHC-peptide (MHCp) is quickly followed by a second, stronger, binding phase representing the binding of CD8 to the MHCp. This second phase requires signaling by a Src-family kinase such as Lck. These data point out two aspects of the initial stage of TCR signaling that have not yet been clearly resolve...
متن کاملTRP channel proteins and signal transduction.
TRP channel proteins constitute a large and diverse family of proteins that are expressed in many tissues and cell types. This family was designated TRP because of a spontaneously occurring Drosophila mutant lacking TRP that responded to a continuous light with a transient receptor potential (hence TRP). In addition to responses to light, TRPs mediate responses to nerve growth factor, pheromone...
متن کاملModular binding domains in signal transduction proteins
The transduction of a signal is a change in form of the signal as it is passed from one carrier to another. The root "duce" means"to lead" in Latin; thus, a signal is led through a cell by steps of transduction (the same root is in the words seduce and duct as well as II Duce). The earliest transduction steps that were elucidated involved massive release of small molecule "second messengers", o...
متن کاملIdentification of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine receptor chloride channel.
Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha1 subunit. These flan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2012
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2012.09.001