Classification of solvable Leibniz algebras with null-filiform nilradical
نویسندگان
چکیده
منابع مشابه
Naturally graded quasi-filiform Leibniz algebras
The classification of naturally graded quasi-filiform Lie algebras is known; they have the characteristic sequence (n − 2, 1, 1) where n is the dimension of the algebra. In the present paper we deal with naturally graded quasi-filiform non-Lie–Leibniz algebras which are described by the characteristic sequence C(L) = (n − 2, 1, 1) or C(L) = (n − 2, 2). The first case has been studied in [Camach...
متن کاملSolvable Lie algebras with $N(R_n,m,r)$ nilradical
In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.
متن کاملOn Classification of Complex Filiform Leibniz
Abstract. This work deal with Leibniz algebras. It is shown that in classifying of filiform non-Lie Leibniz algebras over the field of complex numbers which are obtained from the naturally graded non-Lie Leibniz algebras it suffices to consider some special basis transformations. Using this result, we derive a criterion that ascertains whether given two such filiform non-Lie Leibniz algebras ar...
متن کاملOn Low-Dimensional Filiform Leibniz Algebras and Their Invariants
The paper deals with the complete classification of a subclass of complex filiform Leibniz algebras in dimensions 5 and 6. This subclass arises from the naturally graded filiform Lie algebras. We give a complete list of algebras. In parametric families cases, the corresponding orbit functions (invariants) are given. In discrete orbits case, we show a representative of the orbits. 2010 Mathemati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2013
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081087.2012.703194