Classification of Sleep Stage with Biosignal Images Using Convolutional Neural Networks
نویسندگان
چکیده
Clinicians and researchers divide sleep periods into different stages to analyze the quality of sleep. Despite advances in machine learning, sleep-stage classification is still performed manually. The process tedious time-consuming, but its automation has not yet been achieved. Another problem low accuracy due inconsistencies between somnologists. In this paper, we propose a method classify using convolutional neural network. network trained with EEG EOG images time frequency domains. biosignal are appropriate as inputs network, these natural provided somnologists polysomnography. To validate classifier was tested public Sleep-EDFx dataset. results show that proposed achieves state-of-the-art performance on (accuracy 94%, F1 94%). demonstrate able learn features described scoring manual from data.
منابع مشابه
Classification of Time-Series Images Using Deep Convolutional Neural Networks
Convolutional Neural Networks (CNN) has achieved a great success in image recognition task by automatically learning a hierarchical feature representation from raw data. While the majority of Time-Series Classification (TSC) literature is focused on 1D signals, this paper uses Recurrence Plots (RP) to transform time-series into 2D texture images and then take advantage of the deep CNN classifie...
متن کاملClassification of breast cancer histology images using Convolutional Neural Networks
Breast cancer is one of the main causes of cancer death worldwide. The diagnosis of biopsy tissue with hematoxylin and eosin stained images is non-trivial and specialists often disagree on the final diagnosis. Computer-aided Diagnosis systems contribute to reduce the cost and increase the efficiency of this process. Conventional classification approaches rely on feature extraction methods desig...
متن کاملClassification of Photo and Sketch Images Using Convolutional Neural Networks
In this study we propose a Convolutional Neural Network(CNN) which can classify hand drawn sketch images. Though CNN is known to be very effective on classification of realistic images, there are few studies on CNN dealing with nonphotorealistic images and even more images those types are mixing. Classifying non-photorealistic images is difficult mainly because there are no large datasets. In t...
متن کاملImage Classification using Convolutional Neural Networks
The specific paper I’ve chosen is titled “ImageNet Classification with Deep Convolutional Neural Networks” [1]. ImageNet is an annual competition in image recognition where researchers in the field pit their models against each other to achieve the highest classification accuracy on the same set of images. The model put forward in this paper, named AlexNet from it’s main author, beat the second...
متن کاملAcoustic Event Classification Using Convolutional Neural Networks
Acoustic scene classification (ASC) aims to distinguish between different acoustic environments and is a technology which can be used by smart devices for contextualization and personalization. Standard algorithms exploit hand-crafted features which are unlikely to offer the best potential for reliable classification. This paper reports the first application of convolutional neural networks (CN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app12063028