Classification of noncommutative monoid structures on normal affine surfaces

نویسندگان

چکیده

In 2021, Dzhunusov and Zaitseva classified two-dimensional normal affine commutative algebraic monoids. this work, we extend classification to noncommutative monoid structures on surfaces. We prove that monoids are toric. also show how find all a toric surface. Every such structure is induced by comultiplication formula involving Demazure roots. give descriptions of opposite monoids, quotient boundary divisors.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine Permutations and an Affine Coxeter Monoid

In this expository paper, we describe results on pattern avoidance arising from the affine Catalan monoid. The schema of affine codes as canonical decompositions in conjunction with two-row moves is detailed, and then applied in studying the Catalan quotient of the 0-Hecke monoid. We prove a conjecture of Hanusa and Jones concerning periodicity in the number of fully-commutative affine permutat...

متن کامل

Angle Structures and Normal Surfaces

Let M be the interior of a compact 3–manifold with boundary, and let T be an ideal triangulation of M. This paper describes necessary and sufficient conditions for the existence of angle structures, semi–angle structures and generalised angle structures on (M ;T ) respectively in terms of a generalised Euler characteristic function on the solution space of the normal surface theory of (M ; T )....

متن کامل

Jacobi structures on affine bundles

We study affine Jacobi structures (brackets) on an affine bundle π : A→M , i.e. Jacobi brackets that close on affine functions. We prove that if the rank of A is non-zero, there is a one-to-one correspondence between affine Jacobi structures on A and Lie algebroid structures on the vector bundle A = ⋃ p∈M Aff(Ap,R) of affine functionals. In the case rank A = 0, it is shown that there is a one-t...

متن کامل

Riemann surfaces: noncommutative story

For an open and dense subset in the Teichmüller space, we introduce a coordinate system which is (relatively) well-behaved under the action of the mapping class group. Surprisingly, the coordinates involve the set of projections and traces in a C∗-algebra. We argue that our approach might be helpful for representation of the mapping class group, and other issues.

متن کامل

Noncommutative Marked Surfaces

The aim of the paper is to attach a noncommutative cluster-like structure to each marked surface Σ. This is a noncommutative algebra AΣ generated by “noncommutative geodesics” between marked points subject to certain triangle relations and noncommutative analogues of Ptolemy-Plücker relations. It turns out that the algebra AΣ exhibits a noncommutative Laurent Phenomenon with respect to any tria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2022

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/16083