Classification of $h$-homogeneous production functions with constant elasticity of substitution

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is the Elasticity of Intertemporal Substitution Constant?∗

This paper shows that the CRRA specification of intertemporal preferences (implying a constant elasticity of intertemporal substitution, or EIS), imposes surprising limitations on within period budget allocations. Consequently, the constant EIS assumption can be tested with demand data. In fact, the parameter of the CRRA utility function is pinned down completely by the shape of Engel curves; i...

متن کامل

A Stochastic Non-Homogeneous Constant Elasticity of Substitution Production Function as an Inverse Problem: A Non-Extensive Entropy Estimation Approach

The document proposes a new entropy-based approach for estimating the parameters of nonlinear and complex models, i.e. those whose no transformation renders linear in parameters. Presently, for estimating such class of functions, various iterative technics like the Gauss Newton algorithm are applied and completed by the least square methods approaches. Due to conceptual nature of such methods, ...

متن کامل

How to Explain Ubiquity of Constant Elasticity of Substitution (CES) Production and Utility Functions Without Explicitly Postulating CES

In many situations, the dependence of the production or utility on the corresponding factors is described by the CES (Constant Elasticity of Substitution) functions. These functions are usually explained by postulating two requirements: an economically reasonable postulate of homogeneity (that the formulas should not change if we change a measuring unit) and a less convincing CSE requirement. I...

متن کامل

Lecture Notes on Constant Elasticity Functions

1 CES Utility In many economic textbooks the constant-elasticity-of-substitution (CES) utility function is defined as: U (x, y) = (αx ρ + (1 − α)y ρ) It is a tedious but straightforward application of Lagrangian calculus to demonstrate that the associated demand functions are: x(p x , p y , M) = α p x σ M α σ p 1−σ x + (1 − α) σ p 1−σ y and y(p x , p y , M) = 1 − α p y σ M α σ p 1−σ x + (1 − α)...

متن کامل

Estimate of Armington substitution elasticity for fishery products in Iran

Abstract Nowadays, fishery and aquaculture products form an important fraction of the protein requirement and food of many people on the earth. The hike in prices of these essential products seems necessary owing to the increase in demand and consumption of these products in the country. The price transmission from the international market to the domestic market of tunas was  investigated in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tamkang Journal of Mathematics

سال: 2012

ISSN: 2073-9826,0049-2930

DOI: 10.5556/j.tkjm.43.2012.1145