Classification of finite-dimensional Hopf algebras over dual Radford algebras

نویسندگان

چکیده

We determine and classify all finite-dimensional Hopf algebras over an algebraically closed field of characteristic zero whose coradicals are isomorphic to dual Radford dimension $4p$ for a prime $p>5$. In particular, we obtain families new examples without the Chevalley property.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representations of Finite Dimensional Pointed Hopf Algebras over S 3

The classification of finite-dimensional pointed Hopf algebras with group S3 was finished in [AHS]: there are exactly two of them, the bosonization of a Nichols algebra of dimension 12 and a non-trivial lifting. Here we determine all simple modules over any of these Hopf algebras. We also find the Gabriel quivers, the projective covers of the simple modules, and prove that they are not of finit...

متن کامل

On Classification of Finite-dimensional Semisimple Hopf Algebras

We develop a mechanism for classication of isomorphism types of non-trivial semisimple Hopf algebras whose group of grouplikes G(H) is abelian of prime index p which is the smallest prime divisor of |G(H)|. We describe structure of the second cohomology group of extensions of kCp by k G where Cp is a cyclic group of order p and G a finite abelian group. We carry out an explicit classification f...

متن کامل

On an Abstract Classification of Finite-dimensional Hopf C*-algebras

We give a complete invariant for finite-dimensional Hopf C*-algebras. Algebras that are equal under the invariant are the same up to a Hopf *-(co-anti)isomorphism. Résumé. On donne un invariant complet pour les C*-algèbres de Hopf

متن کامل

On the Classification of Finite-dimensional Pointed Hopf Algebras

We classify finite-dimensional complex Hopf algebras A which are pointed, that is, all of whose irreducible comodules are one-dimensional, and whose group of group-like elements G(A) is abelian such that all prime divisors of the order of G(A) are > 7. Since these Hopf algebras turn out to be deformations of a natural class of generalized small quantum groups, our result can be read as an axiom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Simon Stevin

سال: 2022

ISSN: ['1370-1444', '2034-1970']

DOI: https://doi.org/10.36045/j.bbms.210612