Classification of Degenerate Verma Modules for E(5, 10)

نویسندگان

چکیده

Abstract Given a Lie superalgebra $${\mathfrak {g}}$$ g with subalgebra {g}}_{\ge 0}$$ ? 0 , and finite-dimensional irreducible -module F the induced $$M(F)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal 0})}F$$ M ( F ) = U ? is called finite Verma module. In present paper we classify non-irreducible modules over largest exceptional linearly compact {g}}=E(5,10)$$ E 5 , 10 of minimal codimension. This done via classification all singular vectors in M ( ). Besides known degree 1,2,3,4 5, discover two new vectors, degrees 7 11. We show that corresponding morphisms 1,4,7, 11 can be arranged an infinite number bilateral complexes, which may viewed as “exceptional” de Rham complexes for E (5, 10).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi–holonomic Verma Modules

Verma modules arise geometrically through the jets of homogeneous vector bundles. We consider in this article, the modules that arise from the semi-holonomic jets of a homogeneous vector bundle. We are particularly concerned with the case of a sphere under MMbius transformations. In this case there are immediate applications in the theory of conformally invariant diierential operators.

متن کامل

Twisted Verma modules

Using principal series Harish-Chandra modules, local cohomology with support in Schubert cells and twisting functors we construct certain modules parametrized by the Weyl group and a highest weight in the subcategory O of the category of representations of a complex semisimple Lie algebra. These are in a sense modules between a Verma module and its dual. We prove that the three different approa...

متن کامل

Baby Verma Modules for Rational Cherednik Algebras

These are notes for a talk in the MIT-Northeastern Spring 2015 Geometric Representation Theory Seminar. The main source is [G02]. We discuss baby Verma modules for rational Cherednik algebras at t = 0.

متن کامل

Harish-Chandra’s homomorphism, Verma modules

The Harish-Chandra homomorphism is due to [Harish-Chandra 1951]. Attention to universal modules with highest weights is in ]Harish-Chandra 1951], [Cartier 1955], as well as [Verma 1968], [BernsteinGelfand-Gelfand 1971a], [Bernstein-Gelfand-Gelfand 1971b], [Bernstein-Gelfand-Gelfand 1975]. See also [Jantzen 1979]. [1] We treat sl(2) in as simple a style as possible, to highlight ideas. Then sl(3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2021

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-021-04031-z