Classification in P2P networks with cascade support vector machines
نویسندگان
چکیده
منابع مشابه
An Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification
Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...
متن کاملParallel Support Vector Machines: The Cascade SVM
We describe an algorithm for support vector machines (SVM) that can be parallelized efficiently and scales to very large problems with hundreds of thousands of training vectors. Instead of analyzing the whole training set in one optimization step, the data are split into subsets and optimized separately with multiple SVMs. The partial results are combined and filtered again in a ‘Cascade’ of SV...
متن کاملGender Classification with Support Vector Machines
Support Vector Machines (SVMs) are investigated for visual gender classification with low resolution “thumbnail” faces (21-by-12 pixels) processed from 1,755 images from the FERET face database. The performance of SVMs (3.4% error) is shown to be superior to traditional pattern classifiers (Linear, Quadratic, Fisher Linear Discriminant, Nearest-Neighbor) as well as more modern techniques such a...
متن کاملDocument Classification with Support Vector Machines
Document classification is the task of grouping documents into categories based upon their content never before has it been as important as it is today. The exponential growth of unstructured data combined with a marked increase in litigation, security and privacy rules have left organizations utterly unable to cope with the conflicting demands of the business, lawyers and regulators. The net i...
متن کاملComparative Exudate Classification Using Support Vector Machines and Neural Networks
After segmenting candidate exudates regions in colour retinal images we present and compare two methods for their classification. The Neural Network based approach performs marginally better than the Support Vector Machine based approach, but we show that the latter are more flexible given criteria such as control of sensitivity and specificity rates. We present classification results for diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Knowledge Discovery from Data
سال: 2013
ISSN: 1556-4681,1556-472X
DOI: 10.1145/2541268.2541273