Classical and Weak Solutions of a Singular Semilinear Elliptic Problem
نویسندگان
چکیده
منابع مشابه
On a singular nonlinear semilinear elliptic problem
where K(x)μC2,b(V9 ), a, pμ(0, 1) and l is a real parameter. Such singular elliptic problems arise in the contexts of chemical heterogeneous catalysts, nonNewtonian fluids and also the theory of heat conduction in electrically conducting materials, see [3, 5, 8, 9] for a detailed discussion. Obviously (1.1) cannot have a solution uμC2(V9 ) if K(x) is not vanishing near ∂V. However, under variou...
متن کاملSingular Solutions for some Semilinear Elliptic Equations
We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...
متن کاملExistence of Positive Weak Solutions with a Prescribed Singular Set of Semilinear Elliptic Equations
In this paper, we consider the problem of the existence of non-negative weak solution u of A u + u P = O i n ~ u = 0 on Of~ n n + 2 ~ / n 1 having a given closed set S as its singular set. We prove that when < p < _ _ and n 2 n 4 + 2 nv/'n-L--1 S is a closed subset of f2, then there are infinite many positive weak solutions with S as their singular set. Applying this method to the conformal sca...
متن کاملExistence and Multiplicity of Solutions for a Singular Semilinear Elliptic Problem in R
Using minimax methods we study the existence and multiplicity of nontrivial solutions for a singular class of semilinear elliptic nonhomogeneous equation where the potentials can change sign and the nonlinearities may be unbounded in x and behaves like exp(αs2) when |s| → +∞. We establish the existence of two distinct solutions when the perturbation is suitable small.
متن کاملWeakly and strongly singular solutions of semilinear fractional elliptic equations
If p ∈ (0, N N−2α ), α ∈ (0, 1), k > 0 and Ω ⊂ R is a bounded C domain containing 0 and δ0 is the Dirac measure at 0, we prove that the weak solution of (E)k (−∆) u + u = kδ0 in Ω which vanishes in Ω is a weak singular solution of (E)∞ (−∆) u + u = 0 in Ω \ {0} with the same outer data. Furthermore, we study the limit of weak solutions of (E)k when k → ∞. For p ∈ (0, 1+ 2α N ], the limit is inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1997
ISSN: 0022-247X
DOI: 10.1006/jmaa.1997.5470