Classes of uniformly starlike and convex functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classes of uniformly starlike and convex functions

Some classes of uniformly starlike and convex functions are introduced. The geometrical properties of these classes and their behavior under certain integral operators are investigated. 1. Introduction. Let A denote the class of functions of the form f (z) = z+ ∞ n=2 a n z

متن کامل

Parabolic Starlike and Uniformly Convex Functions

The main object of this paper is to derive the sufficient conditions for the function z {pψq (z)} to be in the class of uniformly starlike and uniformly convex function associated with the parabolic region Re {ω} > |ω − 1| . Further, the hadamard product of the function which are analytic in the open unit disk with negative coefficients are also investigated. Finally, similar results using an i...

متن کامل

NEW CLASSES OF k-UNIFORMLY CONVEX AND STARLIKE FUNCTIONS WITH RESPECT TO OTHER POINTS

In this paper we introduce new subclasses of k-uniformly convex and starlike functions with respect to other points. We provide necessary and sufficient conditions, coefficient estimates, distortion bounds, extreme points and radii of close-to-convexity, starlikeness and convexity for these classes. We also obtain integral means inequalities with the extremal functions for these classes.

متن کامل

Uniformly Starlike and Convex Functions with Negative Coefficients

Let A(ω) be the class of analytic functions of the form: f(z) = (z − ω) + ∞ ∑ k=2 ak(z − ω) defined on the open unit disk U = {z : |z| < 1} normalized with f(ω) = 0, f ′(ω)−1 = 0 and ω is an arbitrary fixed point in U. In this paper, we define a subclass of ω − α − uniform starlike and convex functions by using a more generalized form of Ruschewey derivative operator. Several properties such as...

متن کامل

On Uniformly Starlike Functions

These are normalized functions regular and univalent in E: IzI < 1, for which f( E) is starlike with respect to the origin. Let y be a circle contained in E and let [ be the center of y. The Pinchuk question is this: Iff(z) is in ST, is it true thatf(y) is a closed curve that is starlike with respect tof(i)? In Section 5 we will see that the answer is no. There seems to be no reason to demand t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2004

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171204402014