Circular codes, loop counting, and zeta-functions
نویسندگان
چکیده
منابع مشابه
ZETA FUNCTIONS AND COUNTING FINITE p-GROUPS
We announce proofs of a number of theorems concerning finite p-groups and nilpotent groups. These include: (1) the number of p-groups of class c on d generators of order pn satisfies a linear recurrence relation in n; (2) for fixed n the number of p-groups of order pn as one varies p is given by counting points on certain varieties mod p; (3) an asymptotic formula for the number of finite nilpo...
متن کاملResults on zeta functions for codes
We give a new and short proof of the Mallows-Sloane upper bound for self-dual codes. We formulate a version of Greene’s theorem for normalized weight enumerators. We relate normalized rank-generating polynomials to two-variable zeta functions. And we show that a selfdual code has the Clifford property, but that the same property does not hold in general for formally self-dual codes.
متن کاملZeta Functions
We review various periodic orbit formulae for the zeta function whose zeros represent semiclassical approximations to the energy levels of chaotic systems. In particular, we focus on the Riemann-Siegel-resummed expression. The emphasis is on the ability of such formulae to reproduce the analytic properties of the spetral determinant, whose zeros are the exact quantum levels. As an example, the ...
متن کاملZeta Functions and Chaos
This paper is an expanded version of lectures given at M.S.R.I. in June of 2008. It provides an introduction to various zeta functions emphasizing zeta functions of a finite graph and connections with random matrix theory and quantum chaos. Section 2. Three Zeta Functions For the number theorist, most zeta functions are multiplicative generating functions for something like primes (or prime ide...
متن کاملZeta Functions and Topological Entropy of the Markov-dyck Shifts
The Markov-Dyck shifts arise from finite directed graphs. An expression for the zeta function of a Markov-Dyck shift is given. The derivation of this expression is based on a formula in Keller (G. Keller, Circular codes, loop counting, and zeta-functions, J. Combinatorial Theory 56 (1991), pp. 75– 83). For a class of examples that includes the Fibonacci-Dyck shift the zeta functions and topolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1991
ISSN: 0097-3165
DOI: 10.1016/0097-3165(91)90023-a