Circle-preserving functions of spheres

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unit-circle-preserving mappings

If f is an isometry, then every distance r > 0 is conserved by f , and vice versa. We can now raise a question whether each mapping that preserves certain distances is an isometry. Indeed, Aleksandrov [1] had raised a question whether a mapping f : X → X preserving a distance r > 0 is an isometry, which is now known to us as the Aleksandrov problem. Without loss of generality, we may assume r =...

متن کامل

Linear Functions Preserving Multivariate and Directional Majorization

Let V and W be two real vector spaces and let &sim be a relation on both V and W. A linear function T : V → W is said to be a linear preserver (respectively strong linear preserver) of &sim if Tx &sim Ty whenever x &sim y (respectively Tx &sim Ty if and only if x &sim y). In this paper we characterize all linear functions T : M_{n,m} → M_{n,k} which preserve or strongly preserve multivariate an...

متن کامل

Linear Functions Preserving Sut-Majorization on RN

Suppose $textbf{M}_{n}$ is the vector space of all $n$-by-$n$ real matrices, and let $mathbb{R}^{n}$ be the set of all $n$-by-$1$ real vectors. A matrix $Rin textbf{M}_{n}$ is said to be $textit{row substochastic}$ if it has nonnegative entries and each row sum is at most $1$. For $x$, $y in mathbb{R}^{n}$, it is said that $x$ is $textit{sut-majorized}$ by $y$ (denoted by $ xprec_{sut} y$) if t...

متن کامل

A non-linear circle-preserving subdivision scheme

We describe a new method for constructing a sequence of refined polygons, which starts with a sequence of points and associated normals. The newly generated points are sampled from circles which approximate adjacent points and the corresponding normals. By iterating the refinement procedure, we get a limit curve interpolating the data. We show that the limit curve is G, and that it reproduces c...

متن کامل

The Blaschke Conjecture and Great Circle Fibrations of Spheres

We construct an explicit diffeomorphism taking any fibration of a sphere by great circles into the Hopf fibration. We use elementary differential geometry, and no surgery or K-theory, to carry out the construction—indeed the diffeomorphism is a local (differential) invariant, algebraic in derivatives. This result is new only for 5 dimensional spheres, but our new method of proof is elementary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1979

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1979-0521693-8