Chronic intermittent hypoxia induces lung growth in adult mice
نویسندگان
چکیده
منابع مشابه
Chronic intermittent hypoxia induces lung growth in adult mice.
Obstructive sleep apnea (OSA) increases cardiovascular morbidity and mortality, which have been attributed to intermittent hypoxia (IH). The effects of IH on lung structure and function are unknown. We used a mouse model of chronic IH, which mimics the O(2) profile in patients with OSA. We exposed adult C57BL/6J mice to 3 mo of IH with a fraction of inspired oxygen (F(I)(O(2))) nadir of 5% 60 t...
متن کاملChronic intermittent hypoxia induces atherosclerosis.
RATIONALE Obstructive sleep apnea, a condition leading to chronic intermittent hypoxia (CIH), is associated with hyperlipidemia, atherosclerosis, and a high cardiovascular risk. A causal link between obstructive sleep apnea and atherosclerosis has not been established. OBJECTIVES The objective of the present study was to examine whether CIH may induce atherosclerosis in C57BL/6J mice. METHO...
متن کاملIntermittent hypoxia induces hyperlipidemia in lean mice.
Obstructive sleep apnea, a syndrome leading to recurrent intermittent hypoxia (IH), has been associated previously with hypercholesterolemia, independent of underlying obesity. We examined the effects of experimentally induced IH on serum lipid levels and pathways of lipid metabolism in the absence and presence of obesity. Lean C57BL/6J mice and leptin-deficient obese C57BL/6J-Lep(ob) mice were...
متن کاملTempol relieves lung injury in a rat model of chronic intermittent hypoxia via suppression of inflammation and oxidative stress
Objective(s): Obstructive sleep apnea (OSA) is confirmed to cause lesions in multiple organs, especially in the lung tissue. Tempol is an antioxidant that has been reported to restrain inflammation and oxidative stress, with its role in OSA-induced lung injury being unclear. This study aimed to investigate the beneficial effect of tempol on chronic intermittent hypoxia (IH)-induced lung injury....
متن کاملIntermittent hypoxia induces transient arousal delay in newborn mice.
Previous studies suggested that defective arousal might be a major mechanism in sleep-disordered breathing such as sudden infant death syndrome and obstructive sleep apnea. In this study, we examined the effects of intermittent hypoxia (IH) on the arousal response to hypoxia in 4-day-old mice. We hypothesized that IH would increase arousal latency, as previously reported in other species, and w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Physiology-Lung Cellular and Molecular Physiology
سال: 2011
ISSN: 1040-0605,1522-1504
DOI: 10.1152/ajplung.00239.2010