منابع مشابه
Digraph Girth via Chromatic Number
Let D be a digraph. The chromatic number χ(D) of D is the smallest number of colors needed to color the vertices of D such that every color class induces an acyclic subdigraph. The girth of D is the length of a shortest directed cycle, or ∞ if D is acyclic. Let G(k, n) be the maximum possible girth of a digraph on n vertices with χ(D) > k. It is shown that G(k, n) ≥ n1/k and G(k, n) ≤ (3 log2 n...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملHedetniemi’s Conjecture Via Alternating Chromatic Number
In an earlier paper, the present authors (2013) [1] introduced the alternating chromatic number for hypergraphs and used Tucker’s Lemma, an equivalent combinatorial version of the Borsuk-Ulam Theorem, to show that the alternating chromatic number is a lower bound for the chromatic number. In this paper, we determine the chromatic number of some families of graphs by specifying their alternating...
متن کاملPacking chromatic number versus chromatic and clique number
The packing chromatic number χρ(G) of a graphG is the smallest integer k such that the vertex set of G can be partitioned into sets Vi, i ∈ [k], where each Vi is an i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers whether there exists a graph G such that ω(G) = a, χ(G) = b, and χρ(G) = c. If so, we say that (a, b, c) is realizable. It is proved that b =...
متن کاملThe Adaptable Chromatic Number and the Chromatic Number
We prove that the adaptable chromatic number of a graph is at least asymptotic to the square root of the chromatic number. This is best possible. Consider a graph G where each edge of G is assigned a colour from {1, ..., k} (this is not necessarily a proper edge colouring). A k-adapted colouring is an assignment of colours from {1, ..., k} to the vertices of G such that there is no edge with th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2017
ISSN: 0012-365X
DOI: 10.1016/j.disc.2017.05.010