Chromatic number and complete graph substructures for degree sequences
نویسندگان
چکیده
منابع مشابه
Chromatic number and complete graph substructures for degree sequences
Given a graphic degree sequence D, let χ(D) (respectively ω(D), h(D), and H(D)) denote the maximum value of the chromatic number (respectively, the size of the largest clique, largest clique subdivision, and largest clique minor) taken over all simple graphs whose degree sequence is D. It is proved that χ(D) ≤ h(D). Moreover, it is shown that a subdivision of a clique of order χ(D) exists where...
متن کاملtotal dominator chromatic number of a graph
given a graph $g$, the total dominator coloring problem seeks aproper coloring of $g$ with the additional property that everyvertex in the graph is adjacent to all vertices of a color class. weseek to minimize the number of color classes. we initiate to studythis problem on several classes of graphs, as well as findinggeneral bounds and characterizations. we also compare the totaldominator chro...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملCircular Chromatic Number and Graph Minors
This paper proves that for any integer n ≥ 4 and any rational number r, 2 ≤ r ≤ n − 2, there exists a graph G which has circular chromatic number r and which does not contain Kn as a minor.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorica
سال: 2013
ISSN: 0209-9683,1439-6912
DOI: 10.1007/s00493-013-2649-z