Choosing shape parameters for regression in reproducing kernel Hilbert space and variable selection

نویسندگان

چکیده

The Gaussian radial basis function (RBF) is a widely used kernel in kernel-based methods. parameter RBF, referred to as the shape parameter, plays an essential role model fitting. In this paper, we propose method select parameters for general RBF kernel. It can simultaneously serve variable selection and regression estimation. For former, asymptotic consistency established; latter, estimation efficient if true or optimal are known. Simulations real examples illustrate method's performance of prediction by comparing it with other popular

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-free Variable Selection in Reproducing Kernel Hilbert Space

Variable selection is popular in high-dimensional data analysis to identify the truly informative variables. Many variable selection methods have been developed under various model assumptions. Whereas success has been widely reported in literature, their performances largely depend on validity of the assumed models, such as the linear or additive models. This article introduces a model-free va...

متن کامل

Subspace Regression in Reproducing Kernel Hilbert Space

We focus on three methods for finding a suitable subspace for regression in a reproducing kernel Hilbert space: kernel principal component analysis, kernel partial least squares and kernel canonical correlation analysis and we demonstrate how this fits within a more general context of subspace regression. For the kernel partial least squares case a least squares support vector machine style der...

متن کامل

Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space

A family of regularized least squares regression models in a Reproducing Kernel Hilbert Space is extended by the kernel partial least squares (PLS) regression model. Similar to principal components regression (PCR), PLS is a method based on the projection of input (explanatory) variables to the latent variables (components). However, in contrast to PCR, PLS creates the components by modeling th...

متن کامل

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

A Reproducing Kernel Hilbert Space Approach to Functional Linear Regression

We study a smoothness regularization method for functional linear regression and provide a unified treatment for both the prediction and estimation problems. By developing a tool on simultaneous diagonalization of two positive definite kernels, we obtain shaper results on the minimax rates of convergence and show that smoothness regularized estimators achieve the optimal rates of convergence fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonparametric Statistics

سال: 2023

ISSN: ['1029-0311', '1026-7654', '1048-5252']

DOI: https://doi.org/10.1080/10485252.2023.2164890