ChevLie: Constructing Lie algebras and Chevalley groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing algebraic groups from their Lie algebras

A connected algebraic group in characteristic 0 is uniquely determined by its Lie algebra. In this paper an algorithm is given for constructing an algebraic group in characteristic 0, given its Lie algebra. Using this an algorithm is presented for finding a maximal reductive subgroup and the unipotent radical of an algebraic group.

متن کامل

Lie Algebras, Algebraic Groups, and Lie Groups

These notes are an introduction to Lie algebras, algebraic groups, and Lie groups in characteristic zero, emphasizing the relationships between these objects visible in their categories of representations. Eventually these notes will consist of three chapters, each about 100 pages long, and a short appendix. Single paper copies for noncommercial personal use may be made without explicit permiss...

متن کامل

Lie Groups and Lie Algebras

A Lie group is, roughly speaking, an analytic manifold with a group structure such that the group operations are analytic. Lie groups arise in a natural way as transformation groups of geometric objects. For example, the group of all affine transformations of a connected manifold with an affine connection and the group of all isometries of a pseudo-Riemannian manifold are known to be Lie groups...

متن کامل

Constructing algebraic Lie algebras

We give an algorithm for constructing the algebraic hull of a given matrix Lie algebra. It is based on an algorithm for finding integral linear dependencies of the roots of a polynomial, that is probably of independent interest.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Software for Algebra and Geometry

سال: 2020

ISSN: 1948-7916

DOI: 10.2140/jsag.2020.10.41