Chemical-Reaction-Inspired Metaheuristic for Optimization
نویسندگان
چکیده
منابع مشابه
A new metaheuristic for optimization: Optics inspired optimization (OIO)
Due to the law of reflection, a concave reflecting surface/mirror causes the incident light rays to converge and a convex surface/mirror causes the light rays to reflect away so that they all appear to be diverging. These converging and diverging behaviors cause that the curved mirrors show different image types depending on the distance between the object and the mirror. We model such optical ...
متن کاملMetaheuristic Optimization: Nature-Inspired Algorithms and Applications
Turing’s pioneer work in heuristic search has inspired many generations of research in heuristic algorithms. In the last two decades, metaheuristic algorithms have attracted strong attention in scientific communities with significant developments, especially in areas concerning swarm intelligence based algorithms. In this work, we will briefly review some of the important achievements in metahe...
متن کاملElectromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm
This paper presents a physics-inspired metaheuristic optimization algorithm, known as Electromagnetic Field Optimization (EFO). The proposed algorithm is inspired by the behavior of electromagnets with different polarities and takes advantage of a nature-inspired ratio, known as the golden ratio. In EFO, a possible solution is an electromagnetic particle made of electromagnets, and the number o...
متن کاملLion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm
During the past decade, solving complex optimization problems with metaheuristic algorithms has received considerable attention among practitioners and researchers. Hence, many metaheuristic algorithms have been developed over the last years. Many of these algorithms are inspired by various phenomena of nature. In this paper, a new population based algorithm, the Lion Optimization Algorithm (LO...
متن کاملCACO : Competitive Ant Colony Optimization, A Nature-Inspired Metaheuristic For Large-Scale Global Optimization
Large-scale problems are nonlinear problems that need metaheuristics, or global optimization algorithms. This paper reviews nature-inspired metaheuristics, then it introduces a framework named Competitive Ant Colony Optimization inspired by the chemical communications among insects. Then a case study is presented to investigate the proposed framework for large-scale global optimization.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Evolutionary Computation
سال: 2010
ISSN: 1941-0026,1089-778X
DOI: 10.1109/tevc.2009.2033580