Chemical machine learning with kernels: The impact of loss functions
نویسندگان
چکیده
منابع مشابه
the impact of computer-assisted language learning on achievement motivation of high school students
چکیده انگیزه دلیل اصلی رفتارهای ما است. به نظر می رسد انگیزه جزء جدایی ناپذیر فرایند یادگیری باشد. ارزش ذاتی موفقیت تمایل به پیشرفت را در یادگیرنده ایجاد میکند. به عبارت ساده این تمایل انگیزه پیشرفت نامیده میشود. انگیزه پیشرفت را میتوان در احساس یادگیرنده هنگام چالش با درس های مدرسه، لذت انجام فعالیت درسی، یا حس کشف پاسخ مشاهده کرد.حتی ممکن است انگیزه پیشرفت را در تلاش یادگیرنده برای جلب تایید...
the impact of generative learning strategy use on efl learners’ reading achievement and critical thinking
این پژوهش کوشیده است تأثیر به کارگیری راهبردهای زایا را بر پیشرفت و بسندگی در خواندن و درک مطلب و نیز بر تفکر انتقادی زبان آموزان انگلیسی را بررسی کند. در این پژوهش تعداد 46 دانش آموز دختر در مقطع متوسطه اول به صورت تصادفی انتخاب وبه دو گروه تجربی و شاهد با تعداد دانش آموزان مساوی در هر گروه تقسیم شدند. به هر دو گروه سه داستان کوتاه به عنوان موضوع خواندن برای کلاس داده شد. به گروه تجربی درابتدا...
Nonparametric Online Machine Learning with Kernels
Max-margin and kernel methods are dominant approaches to solve many tasks in machine learning. However, the paramount question is how to solve model selection problem in these methods. It becomes urgent in online learning context. Grid search is a common approach, but it turns out to be highly problematic in real-world applications. Our approach is to view max-margin and kernel methods under a ...
متن کاملLearning Equivariant Functions with Matrix Valued Kernels
This paper presents a new class of matrix valued kernels that are ideally suited to learn vector valued equivariant functions. Matrix valued kernels are a natural generalization of the common notion of a kernel. We set the theoretical foundations of so called equivariant matrix valued kernels. We work out several properties of equivariant kernels, we give an interpretation of their behavior and...
متن کاملLinearly constrained reconstruction of functions by kernels with applications to machine learning
This paper investigates the approximation of multivariate functions from data via linear combinations of translates of a positive definite kernel from a reproducing kernel Hilbert space. If standard interpolation conditions are relaxed by Chebyshev–type constraints, one can minimize the norm of the approximant in the Hilbert space under these constraints. By standard arguments of optimization t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Quantum Chemistry
سال: 2019
ISSN: 0020-7608,1097-461X
DOI: 10.1002/qua.25872