Chemical implementation of neural networks and Turing machines.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Turing Machines

We extend the capabilities of neural networks by coupling them to external memory resources, which they can interact with by attentional processes. The combined system is analogous to a Turing Machine or Von Neumann architecture but is differentiable end-toend, allowing it to be efficiently trained with gradient descent. Preliminary results demonstrate that Neural Turing Machines can infer simp...

متن کامل

Evolving Neural Turing Machines

Instead of training a Neural Turing Machine (NTM) with gradient descent [1], in this work NTMs are trained through an evolutionary algorithm. Preliminary results suggest that this setup can greatly simplify the neural model, generalizes better, and does not require accessing the entire memory content at each time-step. We show preliminary results on a simple copy and T-Maze learning task.

متن کامل

Towards Chemical Universal Turing Machines

Present developments in the natural sciences are providing enormous and challenging opportunities for various AI technologies to have an unprecedented impact in the broader scientific world. If taken up, such applications would not only stretch present AI technology to the limit, but if successful could also have a radical impact on the way natural science is conducted. We review our experience...

متن کامل

Reinforcement Learning Neural Turing Machines

The Neural Turing Machine (NTM) is more expressive than all previously considered models because of its external memory. It can be viewed as a broader effort to use abstract external Interfaces and to learn a parametric model that interacts with them. The capabilities of a model can be extended by providing it with proper Interfaces that interact with the world. These external Interfaces includ...

متن کامل

Lie-Access Neural Turing Machines

External neural memory structures have recently become a popular tool for algorithmic deep learning (Graves et al., 2014; Weston et al., 2014). These models generally utilize differentiable versions of traditional discrete memory-access structures (random access, stacks, tapes) to provide the storage necessary for computational tasks. In this work, we argue that these neural memory systems lack...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1991

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.88.24.10983