Chebyshev-type quadrature for Jacobi weight functions
نویسندگان
چکیده
منابع مشابه
Szegö quadrature formulas for certain Jacobi-type weight functions
In this paper we are concerned with the estimation of integrals on the unit circle of the form ∫ 2π 0 f(eiθ)ω(θ)dθ by means of the so-called Szegö quadrature formulas, i.e., formulas of the type ∑n j=1 λjf(xj) with distinct nodes on the unit circle, exactly integrating Laurent polynomials in subspaces of dimension as high as possible. When considering certain weight functions ω(θ) related to th...
متن کاملAn Algebraic Study of Gauss-Kronrod Quadrature Formulae for Jacobi Weight Functions*
We study Gauss-Kronrod quadrature formulae for the Jacobi weight function «/"'"'(t) = (l-i)Q(l + t)'3 and its special case a = ß = X^ of the Gegenbauer weight function. We are interested in delineating regions in the (a, /3)-plane, resp. intervals in A, for which the quadrature rule has (a) the interlacing property, i.e., the Gauss nodes and the Kronrod nodes interlace; (b) all nodes contained ...
متن کاملA generalized Birkhoff-Young-Chebyshev quadrature formula for analytic functions
A generalized N-point Birkhoff–Young quadrature of interpolatory type, with the Chebyshev weight, for numerical integration of analytic functions is considered. The nodes of such a quadrature are characterized by an orthogonality relation. Some special cases of this quadrature formula are derived. 2011 Elsevier Inc. All rights reserved.
متن کاملTitchmarsh theorem for Jacobi Dini-Lipshitz functions
Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...
متن کاملAlmost - Interpolatory Chebyshev Quadrature
The requirement that a Chebyshev quadrature formula have distinct real nodes is not always compatible with the requirement that the degree of precision of an npoint formula be at least equal to n. This condition may be expressed as | \d\ \p = 0, 1 g p, where d (dx, ■ ■ ■ , d„) with Mo(w) ~ , -IT dj = 2w A iM ; = 1, 2, • • ■ , z!, ZJ ,_, Pj(io), j = 0, 1, • • • , are the moments of the weight fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1995
ISSN: 0377-0427
DOI: 10.1016/0377-0427(93)e0243-f