Characterizing linear groups in terms of growth properties
نویسندگان
چکیده
منابع مشابه
Representation Growth of Linear Groups
Let Γ be a group and rn(Γ) the number of its n-dimensional irreducible complex representations. We define and study the associated representation zeta function ZΓ(s) = ∞ ∑ n=1 rn(Γ)n . When Γ is an arithmetic group satisfying the congruence subgroup property then ZΓ(s) has an “Euler factorization”. The “factor at infinity” is sometimes called the “Witten zeta function” counting the rational rep...
متن کاملThe Growth of Linear Groups
Let G be a group generated by a finite subset S; define S to be the set Ž . < n < of all products of at most n elements of S, and let a S s S be the n n Ž . Ž . Ž . Ž . number of elements in S . As a S satisfies 1 F a S F a S ? a S , n nqm n m Ž .1r n Ž . Ž .1r n the limit lim a S exists, and a S s lim a S G 1. Although the n n Ž . exact value of a S depends on the generating set S, it is well ...
متن کاملCharacterizing the Multiplicative Group of a Real Closed Field in Terms of its Divisible Maximal Subgroup
متن کامل
Linear Groups and Square Properties in Rings
In [1] a proof was given of Fermat’s Two-Square Theorem using the group theoretical structure of the classical modular group. This has been extended in many directions and to other square properties in general rings. In particular in [2] a two-square theorem was given for the Gaussian integers in terms of when ii is a quadratic residue. In this note we examine and survey this technique and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 2016
ISSN: 0026-2285
DOI: 10.1307/mmj/1472066150