Characterization of joint spectral radius via trace
نویسندگان
چکیده
منابع مشابه
Ela on the Trace Characterization of the Joint Spectral Radius
Abstract. A characterization of the joint spectral radius, due to Chen and Zhou, relies on the limit superior of the k-th root of the dominant trace over products of matrices of length k. In this note, a sufficient condition is given such that the limit superior takes the form of a limit. This result is useful while estimating the joint spectral radius. Although it applies to a restricted class...
متن کاملOn the trace characterization of the joint spectral radius
A characterization of the joint spectral radius, due to Chen and Zhou, relies on the limit superior of the k-th root of the dominant trace over products of matrices of length k. In this note, a sufficient condition is given such that the limit superior takes the form of a limit. This result is useful while estimating the joint spectral radius. Although it applies to a restricted class of matric...
متن کاملOn the joint spectral radius
We prove the `p-spectral radius formula for n-tuples of commuting Banach algebra elements. This generalizes results of [6], [7] and [10]. Let A be a Banach algebra with the unit element denoted by 1. Let a = (a1, . . . , an) be an n-tuple of elements of A. Denote by σ(a) the Harte spectrum of a, i.e. λ = (λ1, . . . , λn) / ∈ σ(a) if and only if there exist u1, . . . , un, v1, . . . , vn ∈ A suc...
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملJoint Spectral Radius : theory and approximations
Acknowledgements I first would like to thank my promotor Vincent Blondel for accepting me as his first Ph.D student, and providing me with a challenging research subject. His constructive comments, his pragmatism and his initiative were essential in the realization of this thesis. Several researchers contributed to this thesis. I would like to especially thank Alexander Vladimirov and Yurii Nes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2000
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(00)00149-x