Characterization of 1-greedy bases

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterization of 1-greedy Bases

We construct random iterative processes for weakly contractive and asymptotically nonexpansive random operators and study necessary conditions for the convergence of these processes. It is shown that they converge to the random fixed points of these operators in the setting of Banach spaces. We also proved that an implicit random iterative process converges to the common random fixed point of a...

متن کامل

synthesis and characterization of some macrocyclic schiff bases

ماکروسیکلهای شیف باز از اهمیت زیادی در شیمی آلی و دارویی برخوردار می باشند. این ماکروسیکلها با دارابودن گروه های مناسب در مکانهای مناسب می توانند فلزاتی مثل مس، نیکل و ... را در حفره های خود به دام انداخته، کمپلکسهای پایدار تولید نمایند. در این پایان نامه ابتدا یک دی آلدئید آروماتیک از گلیسیرین تهیه می شود و در مرحله بعدی واکنش با دی آمینهای آروماتیک و یا آلیفاتیک در رقتهای بسیار زیاد منجر به ت...

15 صفحه اول

Renormings and symmetry properties of 1-greedy bases

We continue the study of 1-greedy bases initiated by F. Albiac and P. Wojtaszczyk [1]. We answer several open problems they raised concerning symmetry properties of 1-greedy bases and the improving of the greedy constant by renorming. We show that 1-greedy bases need not be symmetric nor subsymmetric. We also prove that one cannot in general make a greedy basis 1-greedy as demonstrated for the ...

متن کامل

Renorming spaces with greedy bases

In approximation theory one is often faced with the following problem. We start with a signal, i.e., a vector x in some Banach space X. We then consider the (unique) expansion ∑∞ i=1 xiei of x with respect to some (Schauder) basis (ei) of X. For example, this may be a Fourier expansion of x, or it may be a wavelet expansion in Lp. We then wish to approximate x by considering m-term approximatio...

متن کامل

Greedy Bases for Besov Spaces

We prove that the Banach spaces (⊕n=1`p )`q , which are isomorphic to the Besov spaces on [0, 1], have greedy bases, whenever 1 ≤ p ≤ ∞ and 1 < q < ∞. Furthermore, the Banach spaces (⊕n=1`p )`1 , with 1 < p ≤ ∞, and (⊕n=1`p )c0 , with 1 ≤ p < ∞ do not have a greedy bases. We prove as well that the space (⊕n=1`p )`q has a 1-greedy basis if and only if 1 ≤ p = q ≤ ∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2006

ISSN: 0021-9045

DOI: 10.1016/j.jat.2005.09.017