Characteristic polynomials of complex random matrix models
نویسندگان
چکیده
منابع مشابه
Characteristic Polynomials of Complex Random Matrix Models
We calculate the expectation value of an arbitrary product of characteristic polynomials of complex random matrices and their hermitian conjugates. Using the technique of orthogonal polynomials in the complex plane our result can be written in terms of a determinant containing these polynomials and their kernel. It generalizes the known expression for hermitian matrices and it also provides a g...
متن کاملRatios of characteristic polynomials in complex matrix models
We compute correlation functions of inverse powers and ratios of characteristic polynomials for random matrix models with complex eigenvalues. Compact expressions are given in terms of orthogonal polynomials in the complex plane as well as their Cauchy transforms, generalizing previous expressions for real eigenvalues. We restrict ourselves to ratios of characteristic polynomials over their com...
متن کاملAverages of Characteristic Polynomials in Random Matrix Theory
We compute averages of products and ratios of characteristic polynomials associated with Orthogonal, Unitary, and Symplectic Ensembles of Random Matrix Theory. The pfaffian/determinantal formulas for these averages are obtained, and the bulk scaling asymptotic limits are found for ensembles with Gaussian weights. Classical results for the correlation functions of the random matrix ensembles and...
متن کاملCharacteristic polynomials of real symmetric random matrices
It is shown that the correlation functions of the random variables det(λ−X), in which X is a real symmetric N × N random matrix, exhibit universal local statistics in the large N limit. The derivation relies on an exact dual representation of the problem: the k-point functions are expressed in terms of finite integrals over (quaternionic) k × k matrices. However the control of the Dyson limit, ...
متن کاملAutocorrelation of Random Matrix Polynomials
We calculate the autocorrelation functions (or shifted moments) of the characteristic polynomials of matrices drawn uniformly with respect to Haar measure from the groups U(N), O(2N) and USp(2N). In each case the result can be expressed in three equivalent forms: as a determinant sum (and hence in terms of symmetric polynomials), as a combinatorial sum, and as a multiple contour integral. These...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B
سال: 2003
ISSN: 0550-3213
DOI: 10.1016/s0550-3213(03)00221-9