Characteristic polynomial patterns in difference sets of matrices
نویسندگان
چکیده
منابع مشابه
Decomposition of polynomial sets into characteristic pairs
A characteristic pair is a pair (G, C) of polynomial sets in which G is a reduced lexicographic Gröbner basis, C is the minimal triangular set contained in G, and C is normal. In this paper, we show that any finite polynomial set P can be decomposed algorithmically into finitely many characteristic pairs with associated zero relations, which provide representations for the zero set of P in term...
متن کاملPolynomial characteristic sets for DFA identification
We study the order in Grammatical Inference algorithms, and its influence on the polynomial (with respect to the data) identification of languages. This work is motivated by recent results on the polynomial convergence of data-driven grammatical inference algorithms. In this paper, we prove a sufficient condition that assures the existence of a characteristic sample whose size is polynomial wit...
متن کاملanalyzing patterns of classroom interaction in efl classrooms in iran
با به کار گیری روش گفتما ن شنا سی در تحقیق حا ضر گفتا ر میا ن آموزگا را ن و زبا ن آموزا ن در کلا سهای زبا ن انگلیسی در ایرا ن مورد بررسی قرار گرفت. ا هداف تحقیق عبا رت بودند از: الف) شنا سا ئی سا ختارهای ارتبا ط گفتا ری میا ن معلمین و زبا ن آموزا ن ب) بررسی تا ثیر نقش جنسیت دبیرا ن و زبا ن آموزان بر سا ختا رهای ارتبا ط گفتا ری میا ن آنها پ) مشخص کردن اینکه آ یا آموزگاران غا لب بر این ارتبا ط گف...
The Characteristic Polynomial of Some Perturbed Tridiagonal k-Toeplitz Matrices
We generalize some recent results on the spectra of tridiagonal matrices, providing explicit expressions for the characteristic polynomial of some perturbed tridiagonal k-Toeplitz matrices. The calculation of the eigenvalues (and associated eigenvectors) follows straightforward. Mathematics Subject Classification: 15A18, 42C05, 33C45
متن کاملCounting Integral Matrices with a given Characteristic Polynomial
We give a simpler proof of an earlier result giving an asymptotic estimate for the number of integral matrices, in large balls, with a given monic integral irreducible polynomial as their common characteristic polynomial. The proof uses equidistributions of polynomial trajectories on SL(n, R)/SL(n, Z), which is a generalization of Ratner’s theorem on equidistributions of unipotent trajectories....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the London Mathematical Society
سال: 2016
ISSN: 0024-6093,1469-2120
DOI: 10.1112/blms/bdw008