Characterising vertex-star transitive and edge-star transitive graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterising Star-transitive and St(edge)-transitive Graphs

Recent work of Lazarovich provides necessary and sufficient conditions on a graph L for there to exist a unique simply-connected (k, L)-complex. The two conditions are symmetry properties of the graph, namely star-transitivity and st(edge)-transitivity. In this paper we investigate star-transitive and st(edge)-transitive graphs by studying the structure of the vertex and edge stabilisers of suc...

متن کامل

Product of normal edge-transitive Cayley graphs

For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Vertex-transitive CIS graphs

A CIS graph is a graph in which every maximal stable set and every maximal clique intersect. A graph is well-covered if all its maximal stable sets are of the same size, co-well-covered if its complement is well-covered, and vertex-transitive if, for every pair of vertices, there exists an automorphism of the graph mapping one to the other. We show that a vertex-transitive graph is CIS if and o...

متن کامل

Characterising finite locally s-arc transitive graphs with a star normal quotient∗

Let Γ be a finite locally (G, s)-arc transitive graph with s ≥ 2 such that G is intransitive on vertices. Then Γ is bipartite and the two parts of the bipartition are G-orbits. In previous work the authors showed that if G has a nontrivial normal subgroup intransitive on both of the vertex orbits of G, then Γ is a cover of a smaller locally s-arc transitive graph. Thus the “basic” graphs to stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2014

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-014-1130-z