Characterisations of Ω-stability and structural stability via inverse shadowing
نویسندگان
چکیده
منابع مشابه
Investigation of the Stability via Shadowing Property
The shadowing property is to find an exact solution to an iterated map that remains close to an approximate solution. In this article, using shadowing property, we show the stability of the following equation in normed group: 4n−2Cn/2−1rf ∑n j 1 xj/r n ∑ ik∈{0,1}, ∑n k 1 ik n/2 r2f ∑n i 1 −1 ik xi/r 4n·n−2Cn/2−1 ∑n i 1 f xi , where n ≥ 2, r ∈ R r2 / n and f is a mapping. And we prove that the e...
متن کاملC stability and Ω - stability conjectures for flows
There is a gap in the proof of Lemma VII.4 in [1]. We present an alternative proof of Theorem B (C 1 Ω-stable vector fields satisfy Axiom A) in [1]. The novel and essential part in the proof of the stability and Ω-stability conjectures for flows is the connecting lemma introduced in [1]. A mistake in the proof of the last conjecture was pointed out to me by Toyoshiba [5], who later also provide...
متن کاملstability and attraction domains of traffic equilibria in day-to-day dynamical system formulation
در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...
On the absoluteness of orbital ω-stability
We show that orbital ω-stability is upwards absolute for א0-presented abstract elementary classes satisfying amalgamation and the joint embedding property (each for countable models). We also show that amalgamation does not imply upwards absoluteness of orbital ω-stability by itself. Suppose that k = (K, k) is an abstract elementary class (or AEC; see [1, 8] for a definition), and let (M,a,N) a...
متن کاملDynamical Properties of a Perceptron Learning Process: Structural Stability Under Numerics and Shadowing
In this paper two aspects of numerical dynamics are used for an artificial neural network (ANN) analysis. It is shown that topological conjugacy of gradient dynamical systems and both the shadowing and inverse shadowing properties have nontrivial implications in the analysis of a perceptron learning process. The main result is that, generically, any such process is stable under numerics and rob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2006
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700035632