منابع مشابه
Dynamical Systems and Chaos
These are some notes related to the one-semester course Math 5535 Dynamical Systems and Chaos given at the University of Minnesota during Fall 2012 with an emphasis to the study of continuous and discrete dynamical systems of dimension one and two. An ambitious list of topics to be covered include phase portraits, fixed points, stability, bifurcations, limit sets, periodic orbit, Poincaré map a...
متن کاملDynamical Systems, Stability, and Chaos
In this expository and resources chapter we review selected aspects of the mathematics of dynamical systems, stability, and chaos, within a historical framework that draws together two threads of its early development: celestial mechanics and control theory, and focussing on qualitative theory. From this perspective we show how concepts of stability enable us to classify dynamical equations and...
متن کاملDynamical Systems : Regularity and Chaos
In very general terms, we call DYNAMICAL any kind of “system” which evolves in time, starting from an initial time t0, and whose state at any later time t > t0 can be explicitly and uniquely determined from the assumed knowledge of its initial state at t = t0. One of the major goals of the theory of dynamical systems it to understand how the evolution of any such system is determined by its ini...
متن کاملDynamical Systems, Optimization, and Chaos
Much of engineering is concerned with the topic of optimization, and at the heart of much of our optimization is dynamical systems. Dynamical systems can be thought of as either non-linear continuous-time differential equations or difference equations. Chaos occurs in dynamical systems, and frequently in engineering we seek to avoid chaos. At times chaos becomes the central fascination. This pa...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Physics
سال: 2020
ISSN: 0002-9505,1943-2909
DOI: 10.1119/10.0000678