Change in membrane potential during bacterial chemotaxis.
نویسندگان
چکیده
منابع مشابه
Membrane receptors for aspartate and serine in bacterial chemotaxis.
High affinity binding sites for serine and aspartate have been characterized in membranes from Salmonella typhimurium and Escherichia coli. Greater than 80% of these sites have been identified as chemotaxis receptors. Mutants lacking binding sites for these amino acids have been shown to have corresponding defects in taxis. The substrate specificity of each of the receptors in Salmonella is ver...
متن کاملBacterial chemotaxis
Chemotaxis is the directed motion of an organism toward environmental conditions it deems attractive and/or away from surroundings it finds repellent. Movement of flagellated bacteria such as Escherichia coli can be characterized as a sequence of smooth-swimming runs punctuated by intermittent tumbles. Tumbles last only a fraction of a second, which is sufficient to effectively randomize the di...
متن کاملResponse rescaling in bacterial chemotaxis.
Sensory systems rescale their response sensitivity upon adaptation according to simple strategies that recur in processes as diverse as single-cell signaling, neural network responses, and whole-organism perception. Here, we study response rescaling in Escherichia coli chemotaxis, where adaptation dynamically tunes the cells' motile response during searches for nutrients. Using in vivo fluoresc...
متن کاملSpatial organization in bacterial chemotaxis.
Spatial organization of signalling is not an exclusive property of eukaryotic cells. Despite the fact that bacterial signalling pathways are generally simpler than those in eukaryotes, there are several well-documented examples of higher-order intracellular signalling structures in bacteria. One of the most prominent and best-characterized structures is formed by proteins that control bacterial...
متن کاملResponse thresholds in bacterial chemotaxis
Stimulation of Escherichia coli by exponential ramps of chemoattractants generates step changes in the concentration of the response regulator, CheY-P. Because flagellar motors are ultrasensitive, this should change the fraction of time that motors spin clockwise, the CWbias. However, early work failed to show changes in CWbias when ramps were shallow. This was explained by a model for motor re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1976
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.73.12.4387