Certified Roundoff Error Bounds Using Semidefinite Programming
نویسندگان
چکیده
منابع مشابه
Interval Enclosures of Upper Bounds of Roundoff Errors using Semidefinite Programming
A longstanding problem related to floating-point implementation of numerical programs is to provide efficient yet precise analysis of output errors. We present a framework to compute lower bounds of absolute roundoff errors for numerical programs implementing polynomial functions with box constrained input variables. Our study relies on semidefinite programming (SDP) relaxations and is compleme...
متن کاملRigorous Error Bounds for the Optimal Value in Semidefinite Programming
A wide variety of problems in global optimization, combinatorial optimization as well as systems and control theory can be solved by using linear and semidefinite programming. Sometimes, due to the use of floating point arithmetic in combination with ill-conditioning and degeneracy, erroneous results may be produced. The purpose of this article is to show how rigorous error bounds for the optim...
متن کاملOptimum quantum error recovery using semidefinite programming
Andrew S. Fletcher,* Peter W. Shor, and Moe Z. Win Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Received 7 June 2006; publishe...
متن کاملMinimum Norm Differentiation Formulas with Improved Roundoff Error Bounds
Numerical differentiation formulas of the form ^f-i >"t\. We consider formulas that have minimum norm 2~L'i-i wl ar>d converge to /(m)(a) as ß — a —♦ 0. The resulting roundoff error bounds can be several orders of magnitude less than corresponding bounds for...
متن کاملDynamic Bounds on Stochastic Chemical Kinetic Systems Using Semidefinite Programming
The method of moments has been proposed as a potential means to reduce the dimensionality of the chemical master equation (CME) appearing in stochastic chemical kinetics. However, attempts to apply the method of moments to the CME usually result in the so-called closure problem. Several authors have proposed moment closure schemes, which allow them to obtain approximations of quantities of inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Mathematical Software
سال: 2017
ISSN: 0098-3500,1557-7295
DOI: 10.1145/3015465