Central Limit Theorem for a Class of Linear Systems
نویسندگان
چکیده
منابع مشابه
A central limit theorem for linear
A Poisson process in space{time is used to generate a linear Kolmogorov's birth{growth model. Points start to form on 0; L] at time zero. Each newly formed point initiates two bidirectional moving frontiers of constant speed. New points continue to form on not-yet passed over parts of 0; L]. The whole interval will eventually be passed over by moving frontiers. Let N L be the total number of po...
متن کاملCentral Limit Theorem for Stationary Linear Processes
We establish the central limit theorem for linear processes with dependent innovations including martingales and mixingale type of assumptions as defined in McLeish [Ann. In doing so we shall preserve the generality of the coefficients, including the long range dependence case, and we shall express the variance of partial sums in a form easy to apply. Ergodicity is not required.
متن کاملCentral Limit Theorem for a Class of Relativistic Diffusions
Two similar Minkowskian diffusions have been considered, on one hand by Barbachoux, Debbasch, Malik and Rivet ([BDR1], [BDR2], [BDR3], [DMR], [DR]), and on the other hand by Dunkel and Hänggi ([DH1], [DH2]). We address here two questions, asked in [DR] and in ([DH1], [DH2]) respectively, about the asymptotic behaviour of such diffusions. More generally, we establish a central limit theorem for ...
متن کاملCentral Limit Theorem for Deterministic Systems
A unified approach to obtaining the central limit theorem for hyperbolic dynamical systems is presented. It builds on previous results for one dimensional maps but it applies to the multidimensional case as well. CONTENT 0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 2 1. A general probabilistic result . . . . ....
متن کاملA Class of Stationary Processes and a Central Limit Theorem.
We assume without loss of generality that E{Xn} = 0. Let rs = i£{XnXn+s}. Then r8 = / I T edF(h), where F(X) is the spectral distribution function of the process. In §3 the spectral distribution function of any process of the form (2.2) is shown to be absolutely continuous. Finally it is shown in §4 that under some additional assumptions on the moment structure of the process the central limit ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Probability
سال: 2009
ISSN: 1083-6489
DOI: 10.1214/ejp.v14-644