Celestial talk

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Celestial mechanics.

Albouy, Alain (Paris, France) Belbruno, Ed (Princeton, USA) Buck, Gregory (Saint Anselm College, USA) Chenciner, Alain (Paris, France) Corbera, Montserrat (Universitat de Vic, Spain) Cushman, Richard (Utrecht, Holland and Calgary, Canada) Diacu, Florin (Victoria, Canada) Gerver, Joseph (Rutgers, USA) Hampton, Marshall (Minneapolis, USA) Kotsireas, Ilias (Wilfried Laurier, Waterloo, Canada) Laco...

متن کامل

The Motion of Celestial Bodies

The history of celestial mechanics is first briefly surveyed, identifying the major contributors and their contributions. The Ptolemaic and Copernican world models, Kepler’s laws of planetary motion and Newton’s laws of universal gravity are presented. It is shown that the orbit of a body moving under the gravitational attraction of another body can be represented by a conic section. The six or...

متن کامل

Celestial Mechanics of Elastic Bodies

We construct time independent configurations of two gravitating elastic bodies. These configurations either correspond to the two bodies moving in a circular orbit around their center of mass or strictly static configurations.

متن کامل

Perturbation Theory in Celestial Mechanics

4 Classical perturbation theory 4 4.1 The classical theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.2 The precession of the perihelion of Mercury . . . . . . . . . . . . . . . . . . . . 6 4.2.1 Delaunay action–angle variables . . . . . . . . . . . . . . . . . . . . . . 6 4.2.2 The restricted, planar, circular, three–body problem . . . . . . . . . . . 7 4.2.3 Expansi...

متن کامل

Singularities in Classical Celestial Mechanics

(1) irii'ii = -gradiU(ql9 ..., qn), i = 1, ..., n, where gradf denotes the gradient with respect to q(. Thoughout this paper we use a single dot over a variable to represent its derivative with respect to time t and a double dot to represent its second derivative with respect to t. The potential energy U has a singularity whenever q(=q^ We write this singular set ^v = {€€(«?: *, = *,}, A = U Au...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature

سال: 1983

ISSN: 0028-0836,1476-4687

DOI: 10.1038/306124a0