Categorification of Highest Weight Modules over Quantum Generalized Kac–Moody Algebras
نویسندگان
چکیده
منابع مشابه
Unitarizable weight modules over generalized Weyl algebras
We define a notion of unitarizability for weight modules over a generalized Weyl algebra (of rank one, with commutative coeffiecient ring R), which is assumed to carry an involution of the form X∗ = Y , R∗ ⊆ R. We prove that a weight module V is unitarizable iff it is isomorphic to its finitistic dual V . Using the classification of weight modules by Drozd, Guzner and Ovsienko, we obtain necess...
متن کاملOn highest weight modules over elliptic quantum groups
The purpose of this note is to define and construct highest weight modules for Felder’s elliptic quantum groups. This is done by using exchange matrices for intertwining operators between modules over quantum affine algebras. A similar problem for the elliptic quantum group corresponding to Belavin’s R-matrix was posed in [7]. This problem, as well as its analogue for Felder’s R-matrix was solv...
متن کاملLocally Finite Simple Weight Modules over Twisted Generalized Weyl Algebras
We present methods and explicit formulas for describing simple weight modules over twisted generalized Weyl algebras. When a certain commutative subalgebra is finitely generated over an algebraically closed field we obtain a classification of a class of locally finite simple weight modules as those induced from simple modules over a subalgebra isomorphic to a tensor product of noncommutative to...
متن کاملCharacters of Highest Weight Modules over Affine Lie Algebras Are Meromorphic Functions
We show that the characters of all highest weight modules over an affine Lie algebra with the highest weight away from the critical hyperplane are meromorphic functions in the positive half of the Cartan subalgebra, their singularities being at most simple poles at zeros of real roots. We obtain some information about these singularities. 0. Introduction 0.0.1. Let g be a simple finite-dimensio...
متن کاملSupports of Weight Modules over Witt Algebras
In this paper, as the first step towards classification of simple weight modules with finite dimensional weight spaces over Witt algebras Wn, we explicitly describe supports of such modules. We also obtain some descriptions on the support of an arbitrary simple weight module over a Z-graded Lie algebra g having a root space decomposition ⊕α∈Zngα with respect to the abelian subalgebra g0, with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Moscow Mathematical Journal
سال: 2013
ISSN: 1609-3321,1609-4514
DOI: 10.17323/1609-4514-2013-13-2-315-343