Catalyst shape engineering for anisotropic cross-sectioned nanowire growth
نویسندگان
چکیده
منابع مشابه
Catalyst shape engineering for anisotropic cross-sectioned nanowire growth
The ability to engineer material properties at the nanoscale is a crucial prerequisite for nanotechnology. Hereunder, we suggest and demonstrate a novel approach to realize non-hemispherically shaped nanowire catalysts, subsequently used to grow InP nanowires with a cross section anisotropy ratio of up to 1:1.8. Gold was deposited inside high aspect ratio nanotrenches in a 5 nm thick SiNx selec...
متن کاملNanoparticulate PdZn as a Novel Catalyst for ZnO Nanowire Growth
ZnO nanowires have been grown by chemical vapour deposition (CVD) using PdZn bimetallic nanoparticles to catalyse the process. Nanocatalyst particles with mean particle diameters of 2.6 ± 0.3 nm were shown to catalyse the growth process, displaying activities that compare well with those reported for sputtered systems. Since nanowire diameters are linked to catalyst morphology, the size-control...
متن کاملLedge-flow-controlled catalyst interface dynamics during Si nanowire growth.
Self-assembled nanowires offer the prospect of accurate and scalable device engineering at an atomistic scale for applications in electronics, photonics and biology. However, deterministic nanowire growth and the control of dopant profiles and heterostructures are limited by an incomplete understanding of the role of commonly used catalysts and specifically of their interface dynamics. Although...
متن کاملPerpendicular growth of catalyst-free germanium nanowire arrays.
High yields of single-crystalline Ge nanowires (NWs) were synthesised in the vapour phase of a high boiling point organic solvent without the need for metal catalyst particles. High density, perpendicular arrays of Ge NWs were subsequently grown from ITO coated substrates. The approach represents a convenient route toward orientated arrays of catalyst-free Ge NWs.
متن کاملGaN nanowire and Ga2O3 nanowire and nanoribbon growth from ion implanted iron catalyst
The authors experimentally demonstrate a simple and efficient approach for nucleating the catalytic chemical vapor deposition CVD growth of GaN nanowires, Ga2O3 nanowires, and Ga2O3 nanoribbons by using ion implantation of Fe+ into thermally grown SiO2 layers and subsequent annealing to form the catalyst nanoparticles. This work shows that ion implantation can be used as a versatile method to c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2017
ISSN: 2045-2322
DOI: 10.1038/srep40891