Carrier Relaxation in Epitaxial Graphene Photoexcited Near the Dirac Point
نویسندگان
چکیده
منابع مشابه
Approaching the dirac point in high-mobility multilayer epitaxial graphene.
Multilayer epitaxial graphene is investigated using far infrared transmission experiments in the different limits of low magnetic fields and high temperatures. The cyclotron-resonance-like absorption is observed at low temperature in magnetic fields below 50 mT, probing the nearest vicinity of the Dirac point. The carrier mobility is found to exceed 250,000 cm2/(V x s). In the limit of high tem...
متن کاملDissipative quantum hall effect in graphene near the Dirac point.
We report on the unusual nature of the nu=0 state in the integer quantum Hall effect (QHE) in graphene and show that electron transport in this regime is dominated by counterpropagating edge states. Such states, intrinsic to massless Dirac quasiparticles, manifest themselves in a large longitudinal resistivity rho(xx) > or approximately h/e(2), in striking contrast to rho(xx) behavior in the st...
متن کاملGiant nonlocality near the Dirac point in graphene.
Transport measurements have been a powerful tool for discovering electronic phenomena in graphene. We report nonlocal measurements performed in the Hall bar geometry with voltage probes far away from the classical path of charge flow. We observed a large nonlocal response near the Dirac point in fields as low as 0.1 tesla, which persisted up to room temperature. The nonlocality is consistent wi...
متن کاملCoulomb drag in graphene near the Dirac point.
We study Coulomb drag in graphene near the Dirac point, focusing on the regime of interaction-dominated transport. We establish a novel, graphene-specific mechanism of Coulomb drag based on fast interlayer thermalization, inaccessible by standard perturbative approaches. Using the quantum kinetic equation framework, we derive a hydrodynamic description of transport in double-layer graphene in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2011
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.107.237401